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Institut FEMTO-ST, CNRS, Département LPMO, 32 Avenue de l’Observatoire,
F-25044 Besançon, France
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Abstract
The d2 Pauli operators attached to a composite qudit in dimension d may be
mapped to the vectors of the symplectic module Z2

d (Zd being the modular
ring). As a result, perpendicular vectors correspond to commuting operators,
a free cyclic submodule to a maximal commuting set, and disjoint such sets
to mutually unbiased bases. For dimensions d = 6, 10, 15, 12 and 18, the
fine structure and the incidence between maximal commuting sets are found to
reproduce the projective line over the rings Z6,Z10,Z15,Z6 ×F4 and Z6 ×Z3,
respectively.

PACS numbers: 03.67.−a, 03.65.Fd, 02.10.Ox, 02.40.Dr

Summary

Commutation relations of (generalized) Pauli operators provide a skeleton for mutually
unbiased bases, quantum entanglement and other conceptual (or practical) issues like quantum
computing [1, 2]. Recently, an extensive study of commuting/non-commuting rules has been
undertaken, first in prime power dimensions d = pN of the Hilbert space [1–4] and then in the
smallest composite dimension d = 6 [5]. Commutation relations of two-qubit operators, and
dually the incidence relations between maximal commuting sets of them, have been shown to
fit the (symplectic) generalized quadrangle of order 2, and several projective embeddings have
been proposed [2, 6]. For higher-order Pauli operators, the duality between the observables and
their maximal commuting sets does not occur and the geometrical space of points/observables
may exhibit several lines/sets passing through n-tuples of distinguished points [5].

In this communication, one makes use of the maximal ideals of some ring R (possibly
different from the modular ring Zd ) as the gears of commutation relations. In particular, the
incidence between the 12 lines of the sextit system fits the grid-like structure of the projective
line P1(Z6) over the modular ring Z6. In the higher composite dimensions explored so far
d = 2 × 5 = 10, d = 3 × 5 = 15, d = 2 × 32 = 18 and d = 22 × 3 = 12, the incidence
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of the maximal commuting sets is found to reproduce the projective line P1(R) over rings
R = Z10,R = Z15,R = Z6 × Z3 and R = Z6 × F4, respectively. The unexpected irruption
of the Galois field of four elements F4, within the projective model of the two-qubit/qutrit
system, seems to forbid an easy generalization to an arbitrary dimension d.

There are indeed many ways of defining the quantum states (let us call them ‘qudits’) in
a finite d-dimensional Hilbert space. One representation makes use of the unitary ‘shift’ and
‘clock’ operators X and Z, with the actions X |s〉 = |s + 1〉 , Z |s〉 = ωs |s〉 on the vectors |s〉 of
the Hilbert space. Henceforth ω is a fixed dth root of the unity. Under matrix multiplication,
X and Z generates the (non-commutative) Pauli group G from the basic relation ZX = ωXZ.
As a result, elements of G can be taken as ωaXbZc, with a, b and c in the ring Zd [7–9].
Another representation of the Pauli group is from tensor products of shift and clock actions in
prime dimension [10, 11]. The latter definition is favored in the theory of mutually unbiased
bases [11, 12] and was used in our previous papers devoted to commutation relations [1–5].
A condensation from the d3 elements of the Pauli group to d2 Pauli operators may also be
achieved by taking the quotient of G by its center G′ (the set of all operators which commute
with every other one)1.

Havlicek and Saniga [9] describes the commutation relations between operators in G, and
thus in G/G′, using vectors (b, c) ∈ Z2

d , their attached cyclic submodule

Zd(b, c) = {(ub, uc) : u ∈ Zd}, (1)

and the ‘points’ of the projective line

P1(Zd) = {Zd(b, c) : (b, c) is admissible}. (2)

An admissible vector (b, c) is such that there exists another vector (x, y) for which the matrix(
b c
x y

)
is invertible, which for a commutative ring is equivalent to have a determinant equal to a

unit of the ring. The equivalence class of (b, c) is a free cyclic submodule Zd(b, c), of order
d, and also a ‘point’ of the projective line P1(Zd).

One reminds the geometrical structure of the projective line P1(Zd) [15, 16]. Two

distinct points Zd(b, c) and Zd(b
′, c′) are called distant if det

(
b c
b′ c′

)
equals a unit of the ring

Zd . Otherwise the two points belong to the same neighborhood.
Another crucial concept organizes the vectors in Z2

d : a perpendicular set (b, c)⊥ is defined
as

(b, c)⊥ = {
(u, v) ∈ Z2

d : (b, c) ⊥ (u, v)
}
, (3)

in which two vectors (b, c) and (u, v) are perpendicular if det
(
b c
u v

) = 0. Note that two vectors

within a cyclic submodule are mutually perpendicular. According to [9], operators in G which
commute with a fixed operator correspond to a perpendicular set2. Using this analogy, it seems
natural to identify the elements of a free cyclic submodule, which are mutually perpendicular,
with the maximal commuting sets of Pauli operators, as we already did it implicitly in [5]. A
posteriori one should not be surprised that the projective lineP1(Z6) fits the incidence relations
between the maximal commuting sets of the sextit system. To complete the geometrical picture
of commutation relations, one needs to identify the (not necessarily admissible) vectors of Z2

d

with the d2 Pauli operators.

1 See [13] for a deep connection between mutually unbiased bases and the maximal isotropic subspaces attached to
the finite Heisenberg group over a ring, and also [14] for an intriguing connection of phase-locked quantum states to
prime number theory and the Riemann hypothesis.
2 This notion of perpendicularity related to the commutativity of the operators was already used within the context
of symplectic polar spaces as models of N-qubit systems (see [3] and section 4.1 of [2]).
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Let us summarize main results of [9]:
Theorem 1 asserts that a free cyclic module Zd(b

′, c′) containing a vector (b, c) is
contained in the perpendicular set (b, c)⊥. Only if (b, c) is admissible the corresponding
module equals (b, c)⊥.

It reinforces our interpretation that the maximal sets of mutually commuting operators
(corresponding to Zd(b, c)) also define a base of operators (corresponding to (b, c)⊥).

One immediate consequence concerns the application to mutually unbiased bases. Any
two vectors in one base should be perpendicular, while any two vectors from distinct
mutually unbiased bases should not. Using two nonzero (and admissible) distinct vectors
(b, c) and (b′, c′), the two vector sets Zd(b, c)\{(0, 0)} = {(ub, uc): u ∈ Zd\{0}} and
Zd(b

′, c′)\{(0, 0)} = {(vb′, vc′): v ∈ Zd\{0}} are disjoint only if uv(bc′ − cb′) �= 0, i.e.
if uv �= 0 and (b, c), (b′, c′) are not perpendicular. This cannot happen maximally since Zd is
a ring so that u or v may be zero divisors. The maximal number of mutually unbiased bases in
composite dimension may thus be reformulated as being the maximal number of such disjoint
vector sets in the relevant ring.

If the dimension d is the power of distinct primes pk , theorem 2 in [9] provides quantitative
results about (a) the number of points nd in which any vector (b, c) lies, (b) the partitioning
of (b, c)⊥ as the corresponding set theoretic union of points Zd(b, c) and (c) the cardinality
of (b, c)⊥. One gets

nd =
∏
k∈K

(pk + 1) and |(b, c)⊥| = d
∏
k∈K

pk, (4)

in which K is a subset of the indices related to the decomposition of the entries of (b, c) into
their principal ideals.

Commutation relations of the sextit system

The sextit system (d = 2 × 3 = 6) was investigated in our recent paper [5]. In this dimension,
the (generalized) Pauli operators are defined as

σi ⊗ σj , i ∈ {0, . . . , 3}, j ∈ {0, . . . , 8}, (i, j) �= (0, 0). (5)

The orthonormal set of the qubits comprises the standard Pauli matrices σi = (I2, σx, σy, σz),
where

I2 =
(

1 0
0 1

)
, σx =

(
0 1
1 0

)
, σz =

(
1 0
0 −1

)

and

σy = iσxσz, while the orthonormal set of the qutrits is taken as

σj = {I3, Z,X, Y, V,Z2, X2, Y 2, V 2}, where I3 is the 3 × 3 unit matrix,

Z =
⎛
⎝1 0 0

0 ω 0
0 0 ω2

⎞
⎠ , X =

⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠ , Y = XZ, V = XZ2

and ω = exp(2iπ/3).
The sextit operators can be conveniently labeled as follows: 1 = I2 ⊗ σ1, 2 = I2 ⊗

σ2, . . . , 8 = I2 ⊗ σ8, a0 = σz ⊗ I2, 9 = σz ⊗ σ1, . . . , b0 = σx ⊗ I2, 17 = σx ⊗ σ1, . . . , c0 =
σy ⊗ I2, . . . , 32 = σy ⊗ σ8, in which we singled out the three reference points a0, b0 and c0.

Then one can use the strategy already described in [2] for N-qudit systems. The Pauli
operators are identified with the vertices of a (Pauli) graph and the commuting operators are
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Figure 1. A sketch of a perpendicular set x⊥ attached to a point of type (ii) (see the text for a
definition). The whole structure comprises four similar sets having the operators a0, b0 and c0 in
common.

identified with the edges. The maximal cliques of the graph correspond to the maximal sets
of mutually commuting operators. For the sextit system one gets the 12 sets

L1 = {1, 5, a0, 9, 13}, L2 = {2, 6, a0, 10, 14},
L3 = {3, 7, a0, 11, 15}, L4 = {4, 8, a0, 12, 16},
M1 = {1, 5, b0, 17, 21}, M2 = {2, 6, b0, 18, 22},
M3 = {3, 7, b0, 19, 23}, M4 = {4, 8, b0, 19, 24},
N1 = {1, 5, c0, 25, 29}, N2 = {2, 6, c0, 26, 30},
N3 = {3, 7, c0, 27, 31}, N4 = {4, 8, c0, 28, 32}.

As emphasized in [5], the incidence between the maximal commuting sets leads to a 3 × 4
grid-like structure isomorphic to the projective line over the ring Z6 = Z2 × Z3. A subset
of the commutation structure of the operators is illustrated in figure 1. Let us illustrate the
relationship between the Pauli graph of sextits and the fine structure of the projective line
P1(Z6). Operators x belonging to the maximal sets are of three distinct types3 (see also
figure 1):

(i) x is one of the reference points a0, b0 or c0, lies in four sets and the number of points
commuting with x is |x⊥| = 18,

(ii) x ∈ {1, 2, 3, 4, 5, 6, 7, 8} lies in three sets and |x⊥| = 12,

(iii) otherwise x lies in a single set and |x⊥| = 6.

These results clearly fits (4) with d = 6, p1 = 2 and p3 = 3.
Analogous results are indeed obtained for square-free dimensions d = 2 × 5 = 10 and

d = 3 × 5 = 15, so far explored.

3 The perpendicular set x⊥ includes the operator x itself and the unity operator [9]. But for maximal commuting sets
one usually ignores the unity operator which commutes with every other operator [2, 11].
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points of type (i)
points of type (ii)

points of type (iii)

Figure 2. A sketch of a perpendicular set x⊥ (x is the reference point at the top of the parachute-like
structure. It comprises 12 maximal commuting sets, each one having 11 points (the unity operator
is omitted). The three types of points (i), (ii) and (iii) are described in the text.

Commutation relations for qudits in dimension 12

The qudit system in dimension d = 22×3 = 12 contains the even square 22. In this dimension,
the (generalized) Pauli operators are defined as

σi ⊗ σj ⊗ σk, i, j ∈ {0, . . . , 3}, k ∈ {0, . . . , 8}, (i, j, k) �= (0, 0, 0). (6)

One proceeds as for the sextit system, one determines the Pauli graph of the 12-dit and one
extracts the maximal cliques. The incidence between the corresponding maximal commuting
sets is found to reproduce4 the projective line over the ring R = Zp1 × Zp2 × Fq2 , of order
|R| = (p1 + 1)(p2 + 1)(q2 + 1) with p1 = q = 2 and p2 = 3.

Operators x belonging to the maximal sets are still found to be of three distinct types:

(i) x is one of the reference points (it includes I3 in its tensor product), then one finds that x
lies in (p1 + 1)(p2 + 1) = 12 sets and |x⊥| = dp1p2 = 72.

(ii) x includes I2 ⊗ I2 in its tensor product, lies in (p1 + 1)(q2 + 1) = 15 sets and
|x⊥| = dp1q = 48,

(iii) otherwise x lies in p1 + 1 = 3 sets and |x⊥| = p1d = 24.

The commutation relations within a perpendicular set x⊥ of type (i) are illustrated in
figure 2. It comprises three bundles of four lines each, organized in a parachute-like structure.
The lines of a specific bundle intersect at three distinguished points, each one of type (i).

Commutation relations for qudits in dimension 18

The qudit system in dimension d = 2×32 = 18 contains the odd square 32. In this dimension,
the (generalized) Pauli operators are defined as

σi ⊗ σj ⊗ σk, i ∈ {0, . . . , 3}, j, k ∈ {0, . . . , 8}, (i, j, k) �= (0, 0, 0). (7)

Again one determines the Pauli graph of the 18-dit and one computes the maximal cliques.
The incidence between the corresponding maximal commuting sets is found to reproduce the
projective line P1(R) over the ring R = Zp1 × Zp2 × Zp2 of order |R| = (p1 + 1)(p2 + 1)2

with p1 = 2 and p2 = 3.
4 For a classification of projective lines over small commutative rings see [16].
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point of type (i)

point of type (ii)

point of type (iii)
point of type (iv)

point of type (v)

Figure 3. A sketch of a perpendicular set x⊥ (x is the reference point (of type (i)) at the top of
the parachute-like structure. It comprises 16 maximal commuting sets, each one having 17 points
(the unity operator is omitted). Only one bundle is represented in detail. The five types of points
(i)–(v) are described in the text.

Operators x belonging to the maximal sets are found to be of five distinct types:

(i) x is one of the three reference points containing I3 ⊗ I3 in the tensor decomposition, it
lies in (p2 + 1)2 = 16 sets and |x⊥| = dp2

2 = 162,
(ii) x lies in (p1 + 1)(p2 + 1) = 12 sets and |x⊥| = dp1p2 = 108,

(iii) x lies in p2 + 1 = 4 sets and |x⊥| = dp2 = 54,
(iv) x lies in p1 + 1 = 3 sets and |x⊥| = dp1p2 = 108,
(v) otherwise x lies in a single set and |x⊥| = dp2 = 54.

The perpendicular set attached to a point of type (i) is illustrated in figure 3. The fine
structure of the bundles increases in complexity compared to figure 2, each one comprising
four lines intersecting at five points, one of type (i), two of type (ii) and the remaining two of
type (iii).

Discussion and conclusion

It has been found that commuting operators associated with composite qudits in dimension d
correspond to perpendicular vectors within the symplectic module Z2

d . Moreover, the maximal
commuting sets reflect the set-theoretic structure of free cyclic submodules defined over some
commutative ring R, possibly distinct from the modular ring Zd as soon as d contains squares
in the prime number decomposition. An admissible vector, which defines such a submodule,
is of two types [16] (a) either one (at least) of its entries is a unit of the ring R or (b) both
of its entries are zero divisors, not in the same maximal ideal of R. Thus the maximal ideals
underlie the projective line [16] and the commutation structure of qudit operators.

In figure 4, we give a sketch of the interaction between maximal ideals of the rings
Z2 × Z3 (corresponding to the qubit/qutrit system), Z2 × Z3 × Z3 (corresponding to the
qubit/two-qutrit system) and Z2 ×Z3 ×F4 (corresponding to the two-qubit/qutrit system). To
some extent one can identify the factors of the qudit system with the maximal ideals, and the
peculiar set theoretic union/intersection of them governs the whole commutation structure.
The ideals themselves have a ring structure. For example the three ideals in (c) are subsets
isomorphic to Z2 ×Z3,Z2 ×F4 and Z3 ×F4, respectively. The corresponding projective lines
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(b)(a) (c)

Figure 4. A sketch of the maximal ideals of rings Z2 × Z3 (illustrating the qubit/qutrit) (a),
Z2 × Z3 × Z3 (illustrating the two-qutrit/qubit (b) and Z2 × Z3 × F4 (illustrating the two-
qubit/qutrit) (c). The ellipses feature maximal ideals, and their intersection is marked by a small
circle; the filled black circle is the zero element of the ring (compare figure 5 in [1]).

are 3 × 4, 3 × 5 and 4 × 5 grids. The last grid exhibits a maximum number of four distant
points, corresponding to the maximum number of mutually unbiased bases in dimension 12.

Further work should clarify whether a ring R is attached to any composite qubit. This
could have application not only to mutually unbiased bases, but to quantum chemistry [17],
quantum channels [18], the non-Abelian hidden subgroup problem [19] and other quantum
information processing problems, as well.
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